Peptaibol zervamicin IIb structure and dynamics refinement from transhydrogen bond J couplings.
نویسندگان
چکیده
Zervamicin IIB (Zrv-IIB) is a channel-forming peptaibol antibiotic of fungal origin. The measured transhydrogen bond (3h)J(NC') couplings in methanol solution heaving average value of -0.41 Hz indicate that the stability of the Zrv-IIB helix in this milieu is comparable to the stability of helices in globular proteins. The N-terminus of the peptide forms an alpha-helix, whereas 3(10)-helical hydrogen bonds stabilize the C-terminus. However, two weak transhydrogen bond peaks are observed in a long-range HNCO spectrum for HN Aib(12). Energy calculations using the Empirical Conformation Energy Program for Peptides (ECEPP)/2 force field and the implicit solvent model show that the middle of the peptide helix accommodates a bifurcated hydrogen bond that is simultaneously formed between HN Aib(12) and CO Leu(8) and CO Aib(9). Several lowered (3h)J(NC') on a polar face of the helix correlate with the conformational exchange process observed earlier and imply dynamic distortions of a hydrogen bond pattern with the predominant population of a properly folded helical structure. The refined structure of Zrv-IIB on the basis of the observed hydrogen bond pattern has a small ( approximately 20 degrees ) angle of helix bending that is virtually identical to the angle of bending in dodecylphosphocholine (DPC) micelles, indicating the stability of a hinge region in different environments. NMR parameters ((1)HN chemical shifts and transpeptide bond (1)J(NC') couplings) sensitive to hydrogen bonding along with the solvent accessible surface area of carbonyl oxygens indicate a large polar patch on the convex side of the helix formed by three exposed backbone carbonyls of Aib(7), Aib(9), and Hyp(10) and polar side chains of Hyp(10), Gln(11), and Hyp(13). The unique structural features, high helix stability and the enhanced polar patch, set apart Zrv-IIB from other peptaibols (for example, alamethicin) and possibly underlie its biological and physiological properties.
منابع مشابه
Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating.
Zervamicin IIB is a 16-amino acid peptaibol that forms voltage-dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. The spatial structure of zervamicin IIB bound to dodecylphosphocholine micelles was studied by nuclear magnetic resonance spectroscopy. The set of 20 structures obtained has a bent helical conformation with a mean backbone root ...
متن کاملInteraction of zervamicin IIB with lipid bilayers. Molecular dynamics study
In this work we have studied the interaction of zervamicin IIB (ZrvIIB) with the model membranes of eukaryotes and prokaryotes using all-atom molecular dynamics. In all our simulations zervamicin molecule interacted only with lipid headgroups but did not penetrate the hydrophobic core of the bilayers. During the interaction with the prokaryotic membrane zervamicin placed by its N-termini toward...
متن کامل15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes.
The topologies of zervamicin II and alamethicin, labeled with (15)N uniformly, selectively, or specifically, have been investigated by oriented proton-decoupled (15)N solid-state NMR spectroscopy. Whereas at lipid-to-peptide (L/P) ratios of 50 (wt/wt) zervamicin II exhibits transmembrane alignments in 1,2-dicapryl (di-C10:0-PC) and 1,2-dilauroyl (di-C12:0-PC) phosphatidylcholine bilayers, it ad...
متن کاملA Study of the Mechanism of Action of Zervamicin IIB Peptide Antibiotic by Molecular Dynamics Simulation Konstantin V. Shaitan, Olga V. Levtsova, Vladimir Makarov, Mikhail P. Kirpichnikov
We model mechanism of action of a channel forming peptide antibiotic, zervamicin IIB, by molecular dynamics (MD) simulation. Interaction of this peptide with neutral and negatively charged lipid bilayers is investigated. It is found that charge of membrane surface influences the orientation of zervamicin IIB molecule, that may in turn effect its permeation into the membrane. On this basis we pr...
متن کاملCrystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment.
Crystals of an ion-channel-forming peptaibol peptide in a partial membrane environment have been obtained by cocrystallizing antiamoebin with n-octanol. The antiamoebin molecule has a bent helical conformation very similar to that established for Leu-zervamicin, despite a significantly different sequence for residues 1-8. The bent helices assemble to form a polar channel in the shape of an hour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 86 6 شماره
صفحات -
تاریخ انتشار 2004